"""
The axes_divider module provides helper classes to adjust the positions of
multiple axes at drawing time.
Divider: this is the class that is used to calculate the axes
position. It divides the given rectangular area into several sub
rectangles. You initialize the divider by setting the horizontal
and vertical lists of sizes that the division will be based on. You
then use the new_locator method, whose return value is a callable
object that can be used to set the axes_locator of the axes.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
from six.moves import map
import matplotlib.transforms as mtransforms
from matplotlib.axes import SubplotBase
from . import axes_size as Size
class Divider(object):
"""
This class calculates the axes position. It
divides the given rectangular area into several
sub-rectangles. You initialize the divider by setting the
horizontal and vertical lists of sizes
(:mod:`mpl_toolkits.axes_grid.axes_size`) that the division will
be based on. You then use the new_locator method to create a
callable object that can be used as the axes_locator of the
axes.
"""
def __init__(self, fig, pos, horizontal, vertical,
aspect=None, anchor="C"):
"""
Parameters
----------
fig : Figure
pos : tuple of 4 floats
position of the rectangle that will be divided
horizontal : list of :mod:`~mpl_toolkits.axes_grid.axes_size`
sizes for horizontal division
vertical : list of :mod:`~mpl_toolkits.axes_grid.axes_size`
sizes for vertical division
aspect : bool
if True, the overall rectangular area is reduced
so that the relative part of the horizontal and
vertical scales have the same scale.
anchor : {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'}
placement of the reduced rectangle when *aspect* is True
"""
self._fig = fig
self._pos = pos
self._horizontal = horizontal
self._vertical = vertical
self._anchor = anchor
self._aspect = aspect
self._xrefindex = 0
self._yrefindex = 0
self._locator = None
def get_horizontal_sizes(self, renderer):
return [s.get_size(renderer) for s in self.get_horizontal()]
def get_vertical_sizes(self, renderer):
return [s.get_size(renderer) for s in self.get_vertical()]
def get_vsize_hsize(self):
from .axes_size import AddList
vsize = AddList(self.get_vertical())
hsize = AddList(self.get_horizontal())
return vsize, hsize
@staticmethod
def _calc_k(l, total_size):
rs_sum, as_sum = 0., 0.
for _rs, _as in l:
rs_sum += _rs
as_sum += _as
if rs_sum != 0.:
k = (total_size - as_sum) / rs_sum
return k
else:
return 0.
@staticmethod
def _calc_offsets(l, k):
offsets = [0.]
#for s in l:
for _rs, _as in l:
#_rs, _as = s.get_size(renderer)
offsets.append(offsets[-1] + _rs*k + _as)
return offsets
def set_position(self, pos):
"""
set the position of the rectangle.
Parameters
----------
pos : tuple of 4 floats
position of the rectangle that will be divided
"""
self._pos = pos
def get_position(self):
"return the position of the rectangle."
return self._pos
def set_anchor(self, anchor):
"""
Parameters
----------
anchor : {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'}
anchor position
===== ============
value description
===== ============
'C' Center
'SW' bottom left
'S' bottom
'SE' bottom right
'E' right
'NE' top right
'N' top
'NW' top left
'W' left
===== ============
"""
if anchor in mtransforms.Bbox.coefs or len(anchor) == 2:
self._anchor = anchor
else:
raise ValueError('argument must be among %s' %
', '.join(mtransforms.BBox.coefs))
def get_anchor(self):
"return the anchor"
return self._anchor
def set_horizontal(self, h):
"""
Parameters
----------
h : list of :mod:`~mpl_toolkits.axes_grid.axes_size`
sizes for horizontal division
"""
self._horizontal = h
def get_horizontal(self):
"return horizontal sizes"
return self._horizontal
def set_vertical(self, v):
"""
Parameters
----------
v : list of :mod:`~mpl_toolkits.axes_grid.axes_size`
sizes for vertical division
"""
self._vertical = v
def get_vertical(self):
"return vertical sizes"
return self._vertical
def set_aspect(self, aspect=False):
"""
Parameters
----------
aspect : bool
"""
self._aspect = aspect
def get_aspect(self):
"return aspect"
return self._aspect
def set_locator(self, _locator):
self._locator = _locator
def get_locator(self):
return self._locator
def get_position_runtime(self, ax, renderer):
if self._locator is None:
return self.get_position()
else:
return self._locator(ax, renderer).bounds
def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None):
"""
Parameters
----------
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
axes
renderer
"""
figW, figH = self._fig.get_size_inches()
x, y, w, h = self.get_position_runtime(axes, renderer)
hsizes = self.get_horizontal_sizes(renderer)
vsizes = self.get_vertical_sizes(renderer)
k_h = self._calc_k(hsizes, figW*w)
k_v = self._calc_k(vsizes, figH*h)
if self.get_aspect():
k = min(k_h, k_v)
ox = self._calc_offsets(hsizes, k)
oy = self._calc_offsets(vsizes, k)
ww = (ox[-1] - ox[0])/figW
hh = (oy[-1] - oy[0])/figH
pb = mtransforms.Bbox.from_bounds(x, y, w, h)
pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh)
pb1_anchored = pb1.anchored(self.get_anchor(), pb)
x0, y0 = pb1_anchored.x0, pb1_anchored.y0
else:
ox = self._calc_offsets(hsizes, k_h)
oy = self._calc_offsets(vsizes, k_v)
x0, y0 = x, y
if nx1 is None:
nx1 = nx+1
if ny1 is None:
ny1 = ny+1
x1, w1 = x0 + ox[nx]/figW, (ox[nx1] - ox[nx])/figW
y1, h1 = y0 + oy[ny]/figH, (oy[ny1] - oy[ny])/figH
return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)
def new_locator(self, nx, ny, nx1=None, ny1=None):
"""
Returns a new locator
(:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for
specified cell.
Parameters
----------
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
"""
return AxesLocator(self, nx, ny, nx1, ny1)
def append_size(self, position, size):
if position == "left":
self._horizontal.insert(0, size)
self._xrefindex += 1
elif position == "right":
self._horizontal.append(size)
elif position == "bottom":
self._vertical.insert(0, size)
self._yrefindex += 1
elif position == "top":
self._vertical.append(size)
else:
raise ValueError("the position must be one of left," +
" right, bottom, or top")
def add_auto_adjustable_area(self,
use_axes, pad=0.1,
adjust_dirs=None,
):
if adjust_dirs is None:
adjust_dirs = ["left", "right", "bottom", "top"]
from .axes_size import Padded, SizeFromFunc, GetExtentHelper
for d in adjust_dirs:
helper = GetExtentHelper(use_axes, d)
size = SizeFromFunc(helper)
padded_size = Padded(size, pad) # pad in inch
self.append_size(d, padded_size)
class AxesLocator(object):
"""
A simple callable object, initialized with AxesDivider class,
returns the position and size of the given cell.
"""
def __init__(self, axes_divider, nx, ny, nx1=None, ny1=None):
"""
Parameters
----------
axes_divider : AxesDivider
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
"""
self._axes_divider = axes_divider
_xrefindex = axes_divider._xrefindex
_yrefindex = axes_divider._yrefindex
self._nx, self._ny = nx - _xrefindex, ny - _yrefindex
if nx1 is None:
nx1 = nx+1
if ny1 is None:
ny1 = ny+1
self._nx1 = nx1 - _xrefindex
self._ny1 = ny1 - _yrefindex
def __call__(self, axes, renderer):
_xrefindex = self._axes_divider._xrefindex
_yrefindex = self._axes_divider._yrefindex
return self._axes_divider.locate(self._nx + _xrefindex,
self._ny + _yrefindex,
self._nx1 + _xrefindex,
self._ny1 + _yrefindex,
axes,
renderer)
def get_subplotspec(self):
if hasattr(self._axes_divider, "get_subplotspec"):
return self._axes_divider.get_subplotspec()
else:
return None
from matplotlib.gridspec import SubplotSpec, GridSpec
class SubplotDivider(Divider):
"""
The Divider class whose rectangle area is specified as a subplot geometry.
"""
def __init__(self, fig, *args, **kwargs):
"""
Parameters
----------
fig : :class:`matplotlib.figure.Figure`
args : tuple (*numRows*, *numCols*, *plotNum*)
The array of subplots in the figure has dimensions *numRows*,
*numCols*, and *plotNum* is the number of the subplot
being created. *plotNum* starts at 1 in the upper left
corner and increases to the right.
If *numRows* <= *numCols* <= *plotNum* < 10, *args* can be the
decimal integer *numRows* * 100 + *numCols* * 10 + *plotNum*.
"""
self.figure = fig
if len(args) == 1:
if isinstance(args[0], SubplotSpec):
self._subplotspec = args[0]
else:
try:
s = str(int(args[0]))
rows, cols, num = map(int, s)
except ValueError:
raise ValueError(
'Single argument to subplot must be a 3-digit integer')
self._subplotspec = GridSpec(rows, cols)[num-1]
# num - 1 for converting from MATLAB to python indexing
elif len(args) == 3:
rows, cols, num = args
rows = int(rows)
cols = int(cols)
if isinstance(num, tuple) and len(num) == 2:
num = [int(n) for n in num]
self._subplotspec = GridSpec(rows, cols)[num[0]-1:num[1]]
else:
self._subplotspec = GridSpec(rows, cols)[int(num)-1]
# num - 1 for converting from MATLAB to python indexing
else:
raise ValueError('Illegal argument(s) to subplot: %s' % (args,))
# total = rows*cols
# num -= 1 # convert from matlab to python indexing
# # i.e., num in range(0,total)
# if num >= total:
# raise ValueError( 'Subplot number exceeds total subplots')
# self._rows = rows
# self._cols = cols
# self._num = num
# self.update_params()
# sets self.fixbox
self.update_params()
pos = self.figbox.bounds
horizontal = kwargs.pop("horizontal", [])
vertical = kwargs.pop("vertical", [])
aspect = kwargs.pop("aspect", None)
anchor = kwargs.pop("anchor", "C")
if kwargs:
raise Exception("")
Divider.__init__(self, fig, pos, horizontal, vertical,
aspect=aspect, anchor=anchor)
def get_position(self):
"return the bounds of the subplot box"
self.update_params() # update self.figbox
return self.figbox.bounds
# def update_params(self):
# 'update the subplot position from fig.subplotpars'
# rows = self._rows
# cols = self._cols
# num = self._num
# pars = self.figure.subplotpars
# left = pars.left
# right = pars.right
# bottom = pars.bottom
# top = pars.top
# wspace = pars.wspace
# hspace = pars.hspace
# totWidth = right-left
# totHeight = top-bottom
# figH = totHeight/(rows + hspace*(rows-1))
# sepH = hspace*figH
# figW = totWidth/(cols + wspace*(cols-1))
# sepW = wspace*figW
# rowNum, colNum = divmod(num, cols)
# figBottom = top - (rowNum+1)*figH - rowNum*sepH
# figLeft = left + colNum*(figW + sepW)
# self.figbox = mtransforms.Bbox.from_bounds(figLeft, figBottom,
# figW, figH)
def update_params(self):
'update the subplot position from fig.subplotpars'
self.figbox = self.get_subplotspec().get_position(self.figure)
def get_geometry(self):
'get the subplot geometry, e.g., 2,2,3'
rows, cols, num1, num2 = self.get_subplotspec().get_geometry()
return rows, cols, num1+1 # for compatibility
# COVERAGE NOTE: Never used internally or from examples
def change_geometry(self, numrows, numcols, num):
'change subplot geometry, e.g., from 1,1,1 to 2,2,3'
self._subplotspec = GridSpec(numrows, numcols)[num-1]
self.update_params()
self.set_position(self.figbox)
def get_subplotspec(self):
'get the SubplotSpec instance'
return self._subplotspec
def set_subplotspec(self, subplotspec):
'set the SubplotSpec instance'
self._subplotspec = subplotspec
class AxesDivider(Divider):
"""
Divider based on the pre-existing axes.
"""
def __init__(self, axes, xref=None, yref=None):
"""
Parameters
----------
axes : :class:`~matplotlib.axes.Axes`
xref
yref
"""
self._axes = axes
if xref is None:
self._xref = Size.AxesX(axes)
else:
self._xref = xref
if yref is None:
self._yref = Size.AxesY(axes)
else:
self._yref = yref
Divider.__init__(self, fig=axes.get_figure(), pos=None,
horizontal=[self._xref], vertical=[self._yref],
aspect=None, anchor="C")
def _get_new_axes(self, **kwargs):
axes = self._axes
axes_class = kwargs.pop("axes_class", None)
if axes_class is None:
if isinstance(axes, SubplotBase):
axes_class = axes._axes_class
else:
axes_class = type(axes)
ax = axes_class(axes.get_figure(),
axes.get_position(original=True), **kwargs)
return ax
def new_horizontal(self, size, pad=None, pack_start=False, **kwargs):
"""
Add a new axes on the right (or left) side of the main axes.
Parameters
----------
size : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string
A width of the axes. If float or string is given, *from_any*
function is used to create the size, with *ref_size* set to AxesX
instance of the current axes.
pad : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string
Pad between the axes. It takes same argument as *size*.
pack_start : bool
If False, the new axes is appended at the end
of the list, i.e., it became the right-most axes. If True, it is
inserted at the start of the list, and becomes the left-most axes.
kwargs
All extra keywords arguments are passed to the created axes.
If *axes_class* is given, the new axes will be created as an
instance of the given class. Otherwise, the same class of the
main axes will be used.
"""
if pad:
if not isinstance(pad, Size._Base):
pad = Size.from_any(pad,
fraction_ref=self._xref)
if pack_start:
self._horizontal.insert(0, pad)
self._xrefindex += 1
else:
self._horizontal.append(pad)
if not isinstance(size, Size._Base):
size = Size.from_any(size,
fraction_ref=self._xref)
if pack_start:
self._horizontal.insert(0, size)
self._xrefindex += 1
locator = self.new_locator(nx=0, ny=self._yrefindex)
else:
self._horizontal.append(size)
locator = self.new_locator(nx=len(self._horizontal)-1, ny=self._yrefindex)
ax = self._get_new_axes(**kwargs)
ax.set_axes_locator(locator)
return ax
def new_vertical(self, size, pad=None, pack_start=False, **kwargs):
"""
Add a new axes on the top (or bottom) side of the main axes.
Parameters
----------
size : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string
A height of the axes. If float or string is given, *from_any*
function is used to create the size, with *ref_size* set to AxesX
instance of the current axes.
pad : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string
Pad between the axes. It takes same argument as *size*.
pack_start : bool
If False, the new axes is appended at the end
of the list, i.e., it became the right-most axes. If True, it is
inserted at the start of the list, and becomes the left-most axes.
kwargs
All extra keywords arguments are passed to the created axes.
If *axes_class* is given, the new axes will be created as an
instance of the given class. Otherwise, the same class of the
main axes will be used.
"""
if pad:
if not isinstance(pad, Size._Base):
pad = Size.from_any(pad,
fraction_ref=self._yref)
if pack_start:
self._vertical.insert(0, pad)
self._yrefindex += 1
else:
self._vertical.append(pad)
if not isinstance(size, Size._Base):
size = Size.from_any(size,
fraction_ref=self._yref)
if pack_start:
self._vertical.insert(0, size)
self._yrefindex += 1
locator = self.new_locator(nx=self._xrefindex, ny=0)
else:
self._vertical.append(size)
locator = self.new_locator(nx=self._xrefindex, ny=len(self._vertical)-1)
ax = self._get_new_axes(**kwargs)
ax.set_axes_locator(locator)
return ax
def append_axes(self, position, size, pad=None, add_to_figure=True,
**kwargs):
"""
create an axes at the given *position* with the same height
(or width) of the main axes.
*position*
["left"|"right"|"bottom"|"top"]
*size* and *pad* should be axes_grid.axes_size compatible.
"""
if position == "left":
ax = self.new_horizontal(size, pad, pack_start=True, **kwargs)
elif position == "right":
ax = self.new_horizontal(size, pad, pack_start=False, **kwargs)
elif position == "bottom":
ax = self.new_vertical(size, pad, pack_start=True, **kwargs)
elif position == "top":
ax = self.new_vertical(size, pad, pack_start=False, **kwargs)
else:
raise ValueError("the position must be one of left," +
" right, bottom, or top")
if add_to_figure:
self._fig.add_axes(ax)
return ax
def get_aspect(self):
if self._aspect is None:
aspect = self._axes.get_aspect()
if aspect == "auto":
return False
else:
return True
else:
return self._aspect
def get_position(self):
if self._pos is None:
bbox = self._axes.get_position(original=True)
return bbox.bounds
else:
return self._pos
def get_anchor(self):
if self._anchor is None:
return self._axes.get_anchor()
else:
return self._anchor
def get_subplotspec(self):
if hasattr(self._axes, "get_subplotspec"):
return self._axes.get_subplotspec()
else:
return None
class HBoxDivider(SubplotDivider):
def __init__(self, fig, *args, **kwargs):
SubplotDivider.__init__(self, fig, *args, **kwargs)
@staticmethod
def _determine_karray(equivalent_sizes, appended_sizes,
max_equivalent_size,
total_appended_size):
n = len(equivalent_sizes)
import numpy as np
A = np.mat(np.zeros((n+1, n+1), dtype="d"))
B = np.zeros((n+1), dtype="d")
# AxK = B
# populated A
for i, (r, a) in enumerate(equivalent_sizes):
A[i, i] = r
A[i, -1] = -1
B[i] = -a
A[-1, :-1] = [r for r, a in appended_sizes]
B[-1] = total_appended_size - sum([a for rs, a in appended_sizes])
karray_H = (A.I*np.mat(B).T).A1
karray = karray_H[:-1]
H = karray_H[-1]
if H > max_equivalent_size:
karray = ((max_equivalent_size -
np.array([a for r, a in equivalent_sizes]))
/ np.array([r for r, a in equivalent_sizes]))
return karray
@staticmethod
def _calc_offsets(appended_sizes, karray):
offsets = [0.]
#for s in l:
for (r, a), k in zip(appended_sizes, karray):
offsets.append(offsets[-1] + r*k + a)
return offsets
def new_locator(self, nx, nx1=None):
"""
returns a new locator
(:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for
specified cell.
Parameters
----------
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
"""
return AxesLocator(self, nx, 0, nx1, None)
def _locate(self, x, y, w, h,
y_equivalent_sizes, x_appended_sizes,
figW, figH):
"""
Parameters
----------
x
y
w
h
y_equivalent_sizes
x_appended_sizes
figW
figH
"""
equivalent_sizes = y_equivalent_sizes
appended_sizes = x_appended_sizes
max_equivalent_size = figH*h
total_appended_size = figW*w
karray = self._determine_karray(equivalent_sizes, appended_sizes,
max_equivalent_size,
total_appended_size)
ox = self._calc_offsets(appended_sizes, karray)
ww = (ox[-1] - ox[0])/figW
ref_h = equivalent_sizes[0]
hh = (karray[0]*ref_h[0] + ref_h[1])/figH
pb = mtransforms.Bbox.from_bounds(x, y, w, h)
pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh)
pb1_anchored = pb1.anchored(self.get_anchor(), pb)
x0, y0 = pb1_anchored.x0, pb1_anchored.y0
return x0, y0, ox, hh
def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None):
"""
Parameters
----------
axes_divider : AxesDivider
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
axes
renderer
"""
figW, figH = self._fig.get_size_inches()
x, y, w, h = self.get_position_runtime(axes, renderer)
y_equivalent_sizes = self.get_vertical_sizes(renderer)
x_appended_sizes = self.get_horizontal_sizes(renderer)
x0, y0, ox, hh = self._locate(x, y, w, h,
y_equivalent_sizes, x_appended_sizes,
figW, figH)
if nx1 is None:
nx1 = nx+1
x1, w1 = x0 + ox[nx]/figW, (ox[nx1] - ox[nx])/figW
y1, h1 = y0, hh
return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)
class VBoxDivider(HBoxDivider):
"""
The Divider class whose rectangle area is specified as a subplot geometry.
"""
def new_locator(self, ny, ny1=None):
"""
returns a new locator
(:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for
specified cell.
Parameters
----------
ny, ny1 : int
Integers specifying the row-position of the
cell. When *ny1* is None, a single *ny*-th row is
specified. Otherwise location of rows spanning between *ny*
to *ny1* (but excluding *ny1*-th row) is specified.
"""
return AxesLocator(self, 0, ny, None, ny1)
def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None):
"""
Parameters
----------
axes_divider : AxesDivider
nx, nx1 : int
Integers specifying the column-position of the
cell. When *nx1* is None, a single *nx*-th column is
specified. Otherwise location of columns spanning between *nx*
to *nx1* (but excluding *nx1*-th column) is specified.
ny, ny1 : int
Same as *nx* and *nx1*, but for row positions.
axes
renderer
"""
figW, figH = self._fig.get_size_inches()
x, y, w, h = self.get_position_runtime(axes, renderer)
x_equivalent_sizes = self.get_horizontal_sizes(renderer)
y_appended_sizes = self.get_vertical_sizes(renderer)
y0, x0, oy, ww = self._locate(y, x, h, w,
x_equivalent_sizes, y_appended_sizes,
figH, figW)
if ny1 is None:
ny1 = ny+1
x1, w1 = x0, ww
y1, h1 = y0 + oy[ny]/figH, (oy[ny1] - oy[ny])/figH
return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)
class LocatableAxesBase(object):
def __init__(self, *kl, **kw):
self._axes_class.__init__(self, *kl, **kw)
self._locator = None
self._locator_renderer = None
def set_axes_locator(self, locator):
self._locator = locator
def get_axes_locator(self):
return self._locator
def apply_aspect(self, position=None):
if self.get_axes_locator() is None:
self._axes_class.apply_aspect(self, position)
else:
pos = self.get_axes_locator()(self, self._locator_renderer)
self._axes_class.apply_aspect(self, position=pos)
def draw(self, renderer=None, inframe=False):
self._locator_renderer = renderer
self._axes_class.draw(self, renderer, inframe)
def _make_twin_axes(self, *kl, **kwargs):
"""
Need to overload so that twinx/twiny will work with
these axes.
"""
if 'sharex' in kwargs and 'sharey' in kwargs:
raise ValueError("Twinned Axes may share only one axis.")
ax2 = type(self)(self.figure, self.get_position(True), *kl, **kwargs)
ax2.set_axes_locator(self.get_axes_locator())
self.figure.add_axes(ax2)
self.set_adjustable('datalim')
ax2.set_adjustable('datalim')
self._twinned_axes.join(self, ax2)
return ax2
_locatableaxes_classes = {}
def locatable_axes_factory(axes_class):
new_class = _locatableaxes_classes.get(axes_class)
if new_class is None:
new_class = type(str("Locatable%s" % (axes_class.__name__)),
(LocatableAxesBase, axes_class),
{'_axes_class': axes_class})
_locatableaxes_classes[axes_class] = new_class
return new_class
#if hasattr(maxes.Axes, "get_axes_locator"):
# LocatableAxes = maxes.Axes
#else:
[docs]def make_axes_locatable(axes):
if not hasattr(axes, "set_axes_locator"):
new_class = locatable_axes_factory(type(axes))
axes.__class__ = new_class
divider = AxesDivider(axes)
locator = divider.new_locator(nx=0, ny=0)
axes.set_axes_locator(locator)
return divider
def make_axes_area_auto_adjustable(ax,
use_axes=None, pad=0.1,
adjust_dirs=None):
if adjust_dirs is None:
adjust_dirs = ["left", "right", "bottom", "top"]
divider = make_axes_locatable(ax)
if use_axes is None:
use_axes = ax
divider.add_auto_adjustable_area(use_axes=use_axes, pad=pad,
adjust_dirs=adjust_dirs)
#from matplotlib.axes import Axes
from .mpl_axes import Axes
LocatableAxes = locatable_axes_factory(Axes)