Source code for issm.analyticaldamage

import numpy as  np
from issm.averaging import averaging
#from issm.plotmodel import plotmodel
from issm.thomasparams import thomasparams

[docs]def analyticaldamage(md,**kwargs): ''' ANALYTICALDAMAGE - compute damage for an ice shelf This routine computes damage as a function of water/ice material properties, ice thickness, strain rate, and ice rigidity. The model must contain computed strain rates, either from observed or modeled ice velocities. Available options: -eq : analytical equation to use in the calculation. Must be one of: 'Weertman1D' for a confined ice shelf free to flow in one direction 'Weertman2D' for an unconfined ice shelf free to spread in any direction 'Thomas' for a 2D ice shelf, taking into account full strain rate tensor (default) -smoothing : the amount of smoothing to be applied to the strain rate data. Type 'help averaging' for more information on its usage. -coordsys : coordinate system for calculating the strain rate components. Must be one of: -sigmab : a compressive backstress term to be subtracted from the driving stress in the damage calculation Return values: 'damage' which is truncated in the range [0,1-1e-9] 'B' is the rigidity, which is equal to md.materials.rheology_B in areas outside those defined by 'mask.' Within areas defined by 'mask,' where negative damage is inferred, 'B' is updated to make damage equal to zero. 'backstress' is the inferred backstress necessary to balance the analytical solution (keeping damage within its appropriate limits, e.g. D in [0,1]). Usage: damage,B,backstress=analyticaldamage(md,kwargs) Example: damage,B,backstress=analyticaldamage(md,eq='Weertman2D',smoothing=2,sigmab=10e3) ''' #unpack kwargs eq=kwargs.pop('eq','Thomas') if 'eq' in kwargs: del kwargs['eq'] smoothing=kwargs.pop('smoothing',0) if 'smoothing' in kwargs: del kwargs['smoothing'] coordsys=kwargs.pop('coordsys','longitudinal') if 'coordsys' in kwargs: del kwargs['coordsys'] sigmab=kwargs.pop('sigmab',0) if 'sigmab' in kwargs: del kwargs['sigmab'] assert len(kwargs)==0, 'error, unexpected or misspelled kwargs' if isinstance(sigmab,(int,float)): sigmab=sigmab*np.ones((md.mesh.numberofvertices,)) # check inputs if 'strainrate' not in md.results.__dict__: raise StandardError('md.results.strainrate not present. Calculate using md=mechanicalproperties(md,vx,vy)') if not '2d' in md.mesh.__doc__: raise StandardError('only 2d (planview) model supported currently') if np.any(md.flowequation.element_equation!=2): print 'Warning: the model has some non SSA elements. These will be treated like SSA elements' a,b,theta,ex=thomasparams(md,eq=eq,smoothing=smoothing,coordsys=coordsys) # spreading stress rhoi=md.materials.rho_ice rhow=md.materials.rho_water C=0.5*rhoi*md.constants.g*(1.-rhoi/rhow) T=C*md.geometry.thickness # rheology B=md.materials.rheology_B n=averaging(md,md.materials.rheology_n,0) D=1.-(1.+a+a**2+b**2)**((n-1.)/(2.*n))/np.abs(ex)**(1./n)*(T-sigmab)/B/(2.+a)/np.sign(ex) # D>1 where (2+a).*sign(ex)<0, compressive regions where high backstress needed pos=np.nonzero(D>1) D[pos]=0 backstress=np.zeros((md.mesh.numberofvertices,)) # backstress to bring D down to one backstress[pos]=T[pos]-(1.-D[pos])*B[pos]*np.sign(ex[pos])*(2.+a[pos])*np.abs(ex[pos])**(1./n[pos])/(1.+a[pos]+a[pos]**2)**((n[pos]-1.)/2./n[pos]) pos=np.nonzero(D<0) #mask=ismember(1:md.mesh.numberofvertices,pos); D[pos]=0 # backstress to bring negative damage to zero backstress[pos]=T[pos]-(1.-D[pos])*B[pos]*np.sign(ex[pos])*(2.+a[pos])*np.abs(ex[pos])**(1./n[pos])/(1.+a[pos]+a[pos]**2)**((n[pos]-1.)/2./n[pos]) pos=np.nonzero(backstress<0) backstress[pos]=0 # rigidity from Thomas relation for D=0 and backstress=0 B=np.sign(ex)/(2.+a)*(1.+a+a**2)**((n-1.)/2./n)*T/(np.abs(ex)**(1./n)) pos=np.nonzero(B<0) B[pos]=md.materials.rheology_B[pos] damage=D return damage, B, backstress